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ABSTRACT 

In the framework of reggeon field theory it is shown that multiparticle 

production processes with repeated Pomeron exchange satisfy unitarity 

constraints and avoid decoupling problems, for a small enough PPP Y -. 

coupling. For a large cP,P coupling, the existence of a two-Pomeron 

bound state at j>i is discussed. We also find that the leading contribution 

to on(s) behaves like uel(s) . 
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The exposition of the strong coupling solution to Reggeon field theory 

(RFT)1-3 has led to the investigation of many of its facets 2,4>5 in an 

attempt to probe the extent to which RFI may serve as a consistent 

framework for large energy and small t behavior in strong interactions. 

One crucial test for RFT is the fulfillment of s-channel unitarity. By 

construction RFPsare t-channel unitary,but although they involve 

multipomeron cuts which have been used to enforce s-channel unitarity 

in absorptive models, 6.. It LS not a priori clear that they satisfy all 

requirements of s-channel unitarity. 

In the absence of a complete proof of s-channel unitarity, one is 

led to check whether RFT at least satisfies some of the constraints imposed 

by unitarity. One set of inelastic processes that are known to be 

problematical are the multiparticle production processes. In particular, 

the repeated exchange of a Pomeron pole with intercept one 7 is known to 

violate the Froissart bound. It is, therefore, a severe test of RFT to see 

whether the Pomeron cut corrections in these processes restore s-channel 

unitarity. 

In this letter we examine multiparticle production processes with 

repeated Pomeron exchange. Our calculations are based on reggeon field 

theory as derived from the reggeon calculus found recently. 
8 

We compute 

c On(S)’ 4s) = n on(s) and find that s-channel unitarity is restored. The 

violation of the Froissart bound in the Finkelstein-Kajantie model is due 

to the existence of a j-plane singularity at j>i , and we show that this 
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pole disappears in the presence of Pomeron cuts, provided the ,PP,P 

vertex (Pomeron-Particle-Pomeron vertex) is not too large. For large 

couplings the pole may persist. We then include a secondary reggeon 

into the production processes and demonstrate that decoupling problems 

are avoided. Details of all these calculations will be published elsewhere. 

Part of this has been the subject of a study of Migdal, Polyakov, and 

Ter-Martirosyan. 
2 Our results demonstrate that, in fact, they have 

considered only nonleading contributions to on(s) and, hence, do not 

answer the question of s-channel unitarity. Furthermore, our reggeon 

calculus allows us to include a secondary reggeon and study decoupling 

problems. 

We first study the energy behavior of on(s) for processes with 

only Pomeron exchanges between produced particles (or clusters) with 

finite fixed masses (Fig. 1). Using the Lagrangian which describes the 

Pomeron in the elastic scatteringland treating the ,PP,P vertex as an 

external source for the Pomeron field, one obtains a scaling law for the 

2-n scattering amplitude in the rapidity-impact parameter representation: 

T 2+n(Y,Yi;si) = Y 
P-P -i)( +.+y+p) yi 5 

@F* yz 
i i 

(1) 



-4- FERMILAB-Pub-75/43-THY 

where D is the transverse dimension (D=Z for the physical world), 

Y = In s the total rapidity, Yi = In sii+, the rapidity gaps between the 

produced particles, and b i the impact parameter differences for the 

produced particles. The quantities p. y, z denote the anomalous 

dimensions of the ,PP,P vertex, the Pomeron propagator, and the 

Pomeron slope, respectively. In the e-expansion (E = 4-D) they are: 

P = clb, y=-c/12, z = 1 + e/24 . (2) 

The cross sections an(Y) for the production of n-2 particles are 

obtained from (1) by taking the square of its absolute value and integrating 

over the phase space of the produced particles gi, $ = Yi/Y . AS long as 

we restrict ourselves to values of the order Y for the rapidity gaps, say 

Yi 2 c’ Y , the $-integrations stay away from ki = 0 , and all integrations 

can be performed. The cross section coming from this region of phase 

space is 

(3) 

in agreement with the results of Ref. 2. However, if we allow for values 

of Yi which grow less rapidly than Y , say YitcYP (O<p<Z), then the 

$-integration goes down to c* Y P-1 which becomes small for large Y 

and is sensitive to whether the $-integration converges for small ti or 

not. We illustrate this for the Finkelstein-Kajantie case (i.e., no Pomeron 

cuts) in D dimensions (2~ D<4).(Note that for D> 2 a kinematical softening 

factor t(D-2)‘4 is provided for the ,PP,P vertex. ) After integrating 
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over the momentum transfers t. 
1 

we are left with the integrals 

over the rapidity gaps: 

B(Y) = const.J~dYi”~Yi-Y)~--$ 

1 

For YitcY we clearly have 

a,(Y) = const- Y 
-l-(n-1)(~-i) 

(4) 

(5) 

whereas Yiz cYp leads to 

Y 
-+)-(n-2)p(;-i) 

2<D<4 

on(Y) = const - 

Y 
-1+ 

(In yp-2 D=2 (7) 

which is larger than the contribution (5). From (6) we see that 0 (Y) 
n 

obtains its most important contribution from that region of phase space 

where the Yi grow as little as possible (p small), i.e., in the most 

favored configuration of particle production all rapidity gaps but one are 

as small as allowed by phase space (or low energy dynamics). In the 

limit p*O(Yi finite) the cross sections are 

on,(Y) = c(n)* Y 
-i-(+ 

(8) 

and the asymptotic energy decrease is independent of n . In contrast to 

this, the result (7) does not depend on p , and the important region of 

phase space is that where all Yi are large. 

(6) 

Returning to our case, a close look at the scaling function Q in (1) 
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tells us that,in going from (1) to on, we encounter a divergent ci -integration, 

and expect that (3) will not be the dominant contribution to c 
n’ Therefore, 

instead of squaring and integrating the scattering amplitude (i), we proceed 

differently and start from a reggeon field theory that describes directly 

the cross sections on(Y) rather than the scattering amplitude. The 

Lagrangian of this field theory is 

igo 
-~($it$i2+h.c~) 1 -D $J +G +$Ji 012 12 ’ 

where we have included a (k 22 ) -term into the Pomeron trajectory in order 

to make the theory renormalizable at D=4. This term will not effect the 

infrared behavior of the Pomeron self-coupling. 10 
Together with two source 

terms, this Lagrangian describes the diagrams of Fig. 2, i.e., our theory 

takes into account all enhanced Pomeron absorptive corrections. The 

coupling go describes the self-interaction of the Pomeron,and D&is the 

square of the ,PP,P vertex. The divergence problems we have encountered 

above now appear as divergent integrations of Feynman diagrams, and are 

removed by standard methods of field theory. The objects of our interest 

are the cross sections an(Y): 

emYE on(E) (10) 

where E is the reggeon energy passing the diagrams of Fig. 2, and u,(E) 

represents the sum of all graphs proportional to U n-l 
(U is the 
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renormalized version of U. in (9) ) . Based on this Lagrangian we first 

derive, using renormalization group techniques, a scaling law for 

c(E) = unn(E) (11) 

in the infrared region. 11 The quartic coupling is infrared free, and the 

behavior of u(E) is determined to be: 

o(E) * E-‘1-2y-z’1. const (12) 

with the exponent f-2y-2 : = i in the e-expansion Eq. (2). The partial 

cross sections c n are obtained by expanding the solution of the renormalization 

group equation of u(E) in powers of U and then considering the infrared 

behavior of the coefficients. The leading term is 

on(E) hr const. U 
n-2 E 

- [i-zy-qz] 

E+O 
(13) 

The important feature of this result is that all on(E) have the same infrared 

behavior (except for different constants) and lead to the cross sections: 

5 -- 

on(Y) - 
6 

0 el-c(l”s) . (14) 

The contribution (3) to on(Y) is given by one of the nonleading terms in the 

infrared expansion of on(E). The physical picture for (14). as opposed to (3), 

is the same as the one described after (6): the dominant part of en(Y) is given 

by a configuration of particle production where one rapidity gap is of the 

order Y , while the others are as small as allowed by phase space, 

or some low energy dynamics. In this calculation we have not included 

nonenhanced graphs which for finite (however arbitrarily large) rapidities 
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Yi are no longer negligible. However, the fact that for large s all but 

one rapidity gap are pushed to their lower limit is dictated by the enhanced 

graphs, and nonenhanced graphs would not effect this behavior. 

From (12) we know already that, for E *r 0 , o(E) behaves like 

on(E) and hence the contribution to o,(Y), due to the region E - 0 , 

is not larger than ccl . So there is no violation of unitarity, since 

CT el <CT 
tot * 

However, this does not yet guarantee that our theory avoids 

the Finkelstein-Kajantie problem which has its origin in the existence of 

a j-plane singularity to the right of j = 1. In order to illustrate this in 

more detail, we drop in our Lagrangian (9), the Pomeron self-interaction 

go’ which leads us back to the Finkelstein-Kajantie situation without 

Pomeron cuts. For this case we can explicitly compute c(E): 

with 

I(E) = pos. const x 

c(E) = U 
1 +U*I(E) 

I- LT!siz I-J- -+ 
lnh In ’ - 

(15) 

(16) 

(EN is some constant renormalization energy.) From this we learn that 

c(E) has a pole at some negative E = i-j, no matter how large or small 

U a and the Fmkelstein-Kajantie disease is reflected as a pole in the j-plane 

to the right of j = 1 . If our theory is to avoid the inconsistency, 
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we have to show that this pole disappears once the Pomeron 

self-interactionis turned on. We do this by taking a 

closer look at the p-function which describes the behavior of U(ln E) in 

the renormalization group equation for o(E). In the absence of the triple 

Pomeron coupling it is possible to calculate p(U) explicitly, and we show 

its behavior as a function of U in Fig. 3a for both D = 2 and 2>D-4. 

Using the argument of Gross and Neveu:L it is possible to read off the 

existence of a two-Pomeron bound state from the behavior of p(U). First 

take D> 2, where we know that a kinematical softening of the ,PP,P vertex 

is provided. p starts with a positive slope at U=O, but eventually turns 

over, has another zero at LJ 
C 

and goes like U2 x negative const. for 

large U . If now the physical value U sits to the right of UC , there 

exists a bound state, whereas for O< UC U this bound state disappears. 13 c 

Next we let D approach 2 : as it can be seen in Fig. 3, the interval 

[ 1 O,Uc becomes smaller and smaller, and at D=2 it is shrunk to zero. 

So at D=2, there are no values for U , for which the pole is absent. 

Now we turn on the Pomeron self-interactiong (Fig. 3b). Then 

p(U) becomes a function of g2 as well. For D equal or close to 4, p 

only slightly differs from the situation without the triple pomeron coupling, 

because gL is effectively small of the order e=4-D. As in the previous 

case, we therefore have a region for U , in which we are not plagued 

with any bound state pole, but for U large enough such a pole exists. If 
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D approaches 2, we lose any control over the p-function for large U , 

but we retain the information (at least in order g’) that the slope of p 

at U=O remains positive and different from zero (this is what makes the 

point U=O infrared stable). This guarantees that the region of allowed U 

values for which no pole exists remains different from zero at D=2. 

Whether we still have a pole for large enough U depends on the behavior 

of p for large U . 

It is interesting to note that the slope r of p(U) at U=O has a simple 

interpretation. It is given by 

r=Zy+2p-Fz-1 (17) 

with y, (3, z defined in (2). If we think of a production process with the 

exchange of only one (renormalized) Pomeron between two neighborhood 

(renorm. ) ,PP,P vertices, then a simple counting of anomalous dimensions 

leads to (cf. (4) ) 

an = const*Jndyi 6 (~~i-Y~---& . 

1 

(18) 

Thus a positive r , resulting from this simple power counting already 

indicates the behavior of p near U=O . 

We conclude from this that, in the presence of a triple Pomeron 

coupling, the two-Pomeron bound state which causes the Finkelstein- 

Kajantie disease has moved away as long as the value of the ,PP,P 

vertex does not exceed a certain critical value. If the vertex 

is large enough, then we know, at least for D ?r 4 , that the bound 
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state does exist. Thus Pomeron cuts do cure the Finkelstein-Kajantie 

disease of the simple Pomeron pole picture. But at the same time, 

s-channel unitarity seems to restrict the range of permitted values for 

the ,PP,P vertex, as long as we do not take into consideration other possible 

mechanisms to remove the singularity at j> 1 . 

In order to complete our plan, we have to show that the way in which 

s-channel unitarity is restored does not lead to any decoupling problems. 

The basic mechanism which in our model reconciles the repeated Pomeron 

exchange with s-channel unitarity is the screening of the ,PP,P vertex. The 

radiative corrections produce an anomalous dimension: 

, (19) 

where E 1a E2 and cl, c2 are energy and momentum of the adjacent 

Pomerons, and z and p are given in (2). Next we repeat the argument9 

which in the case of a yPP,P vertex of the form I? pppWl> t21 *r atI + bt2 
w .x 

leads to the decoupling of the Pomeron from the total cross section. 

We take the produced objects in Fig. 1 to be pairs of particles with 

sufficiently large subenergies, such that between them a secondary Regge 

pole with nonzero momentum tR is exposed. This leads to the diagrams of 

Fig. 4. Among all possible diagrams we consider only those which 

contribute to the Regge pole exchange, and drop all those which lead only 

to Regge-Pomeron cuts in the Reggeon channel, This eliminates diagrams 

with Pomerons going all the way parallel to a reggeon from the one side 
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of a particle pair to the other. If the remaining diagrams are to satisfy 

s-channel unitarity in the same way as the processes we considered above, 

each renormalized CPR vertex must be screened by itself, and this 

screening must be strong enough, Otherwise one would either have to 

show that the addition of all cut contributions in the reggeon channel would 

restore unitarity, which because of the different t-behavior of Regge pole 

and Regge-Pomeron cuts is not likely to be true for all values of t 
R’ 

Alternatively, one could assume a vanishing bare CPR coupling. This, 

however, leads back to the decoupling difficulties. For although we do not 

know how to continue our reggeon calculus from negative tR to positive 

values, we do know 
8 

that at the particle pole (tR=m2 and physical angular 

momentum) all Pomeron cut-contributions must decouple from the physical 

partial wave. Hence only the bare EPR vertex survives, and its vanishing 

at negative tR would lead to the old difficulties. 

A closer look at the gPR vertex with the reggeon on its energy 

momentum shell shows that radiative Pomeron corrections as shown in 

Fig. 5 produce branch points in the Pomeron energy plane which accumulate 

at zero when the Pomeron momentum goes to zero. It is important to note 

that such an accumulation, which is known to take place when both Pomeron 

and Reggeon are infrared, also holds for t R#O> as long as the reggeon 

sits on its energy shell. For our argument, we take tB, # 0 . 

The ZPR vertex is described by a reggeon trajectory 
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aR[(Q+kj2] = aR[Q2] + 2p’G.I; 

and a Lagrangian 

2~ $, +?@ - aO’v+.v+- A$++- >($+y’+h.c.) 

+; r$++$$ - + h.c. 1 
Here G, 4 are Pomeron and reggeon fields, respectively, and the reggeon, 

being close to its energy shell, carries energy and momentum n+E2, 

G+c2 with a=i-aR(Q2), tR=-Q2 . The Lagrangian (19) is constructed to 

reproduce the correct infrared behavior of the Pomeron variables. 

Application of the standard renormalization group techniques leads to 

the result that the EPR- vertex has the behavior 

r Ei 
PPR -u ’ TN ’ 

E2=0, k;.;2=0) * &.f[%, a*$) (22) 

with y being the anomalous dimension of the Pomeron propagator.( This 

result holds in all orders of perturbation theory.) Thus the renormalized 

P-two particle-g vertex with a Regge pole exchange between the two n, 

particles has a behavior similar to (17) with the anomalous dimension 

-Y * Proceeding now with the production of n such pairs in the same 

way as we did with processes of Fig. 1, we find that this screening is 

sufficient to satisfy s-channel unitarity. 
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In conclusion, we have demonstrated how RFT in multiparticle 

production processes obeys s-channel unitarity constraints and avoids 

decoupling problems. We also found that in the leading contribution to 

o,(s) only one rapidity gap is large. Accordingly, on(s) has asymptotically 

the same energy dependence as eel(s). 
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FIGURE CAPTIONS 

Fig. 1 

Fig. 2 

Fig. 3 

Multiparticle production with repeated Pomeron exchange 

and Pomeron cut corrections. 

Diagrams for the cross section on(s). 

The function p(U) for D=2 and 2<Dr4. 

Fig. 4 

Fig. 5 

(a) no Pomeron self-interaction. 

(b) with Pomeron self-interaction. 

Production of n-particle pairs with Regge pole exchange 

in the two-particle pair. The wavy line denotes Pomerons, 

the zigzag line secondary reggeons. 

Radiative corrections to the lpPR vertex. 



I 
/ %2\ /s23\ 

v ~-4- 
. -w 

- ,s - 
Fig. I 

. 

. 

2<D<4 
2<D<:4 ~. 

. 

(a.) 
Fig. 3 



Fig. 4 

* 
. . 

. 


